I´m trying to run the "Jarque - Bera" test for normality in R. I have a dataset with 30 time series and would like to run a test for each column since the time series har independent.
What I have tried so far:
> head(PF_ret)
ATCOA SS Equity ATCOB SS Equity ELUXB SS Equity HMB SS Equity INDUC SS Equity INVEB SS Equity
1990-03-30 -0.037661051 -0.07646475 -0.04595186 0.008474576 0.01250000 -0.04595805
1990-04-30 0.006179197 0.02365591 0.06001529 0.008403361 0.06172840 0.02420949
1990-05-31 0.114636643 0.08823529 -0.07573026 0.108333333 0.19209302 0.05885191
1990-06-29 0.044077135 0.04343629 0.06554819 0.090225564 -0.04877097 0.05558087
1990-07-31 -0.014072120 -0.02127660 0.00000000 0.137931034 0.02543068 0.00000000
1990-08-31 -0.285459411 -0.25425331 -0.28451117 -0.151515152 -0.08000000 -0.21061718
library(tseries)
> jarque.bera.test(PF_ret[,1])
Jarque Bera Test
data: PF_ret[, 1]
X-squared = 24.465, df = 2, p-value = 4.87e-06
I know that [,1] means that we are looking at the first column in the dataset. But even if I try to define the test so that the code will run the test separately for each column I fail. I have tried to run the test for the columns above and expect R to write out 6 results for the JB-test.
> jarque.bera.test(PF_ret[,1:6])
Error in jarque.bera.test(PF_ret[, 1:6]) :
x is not a vector or univariate time series
Can anyone help me with this issue?
Aucun commentaire:
Enregistrer un commentaire